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Hydrothermal wave instability of
thermocapillary-driven convection in a coplanar
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(Received 8 February 1996 and in revised form 6 May 1997)

We study the linear stability of surface-tension-driven unidirectional shear flow in an
unbounded electrically conducting liquid layer heated from the side and subjected
to a uniform magnetic field in the plane of the layer. The threshold of convective
instability with respect to oblique travelling waves is calculated depending on the
strength and orientation of the magnetic field. For longitudinal waves the critical
Marangoni number and the corresponding wavelength are found to increase directly
with the induction of a sufficiently strong magnetic field. In general, a coplanar
magnetic field causes stabilization of all disturbances except those aligned with the
field, which are not influenced at all. With increase of the magnetic field this effect
results in the alignment of the most unstable disturbance along the magnetic flux lines.
The maximal stabilization is ensured by the magnetic field being imposed spanwise to
the basic flow. The corresponding critical Marangoni number is found to be almost
insensitive to the thermal properties of the bottom. The strength of the magnetic field
necessary to attain the maximal stabilization for a thermally well-conducting bottom is
considerably lower than that for an insulating bottom. The basic return flow is found
to be linearly stable with respect to purely hydrodynamic disturbances. This effect
determines the stability of the basic state with respect to transverse hydrothermal
waves at Prandtl number Pr < Pr c = 0.018. For such a small Pr no alignment of
the critical perturbation with a spanwise magnetic field is possible, and the critical
Marangoni number can be increased almost directly with the strength of the magnetic
field without limit.

1. Introduction
The variation of surface tension with temperature constitutes a driving mechanism

of a class of fluid flows known as thermocapillary or Marangoni convection. Such
flows are encountered in several material processing technologies, like semiconductor
crystal growth from a melt, where they can have an enormous influence on the
heat and mass transfer. There are several different ways in which thermocapillary
effects can drive the liquid flow. In the case of an isothermal liquid surface with the
temperature gradient imposed strictly normal it, the resulting uniform surface tension
provides a static mechanical equilibrium. It is well known that thermocapillarity
can be a cause of instability of such equilibrium state when the temperature gradient
exceeds a certain critical threshold depending on the liquid properties and its geometry
(Davis 1987). As a result of this instability the quiescent state of the liquid may be
replaced either by a steady cellular convection if the liquid is cooled from the surface
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(Pearson 1958) or travelling surface waves may appear if the liquid is heated from
the surface (Takashima 1981). The latter mode of instability only occurs if the free
surface of the fluid is deformable.

When there is a variation of temperature along the free surface, no quiescent state
of mechanical equilibrium is possible regardless of how small this variation is. The
induced gradient of the surface tension drives the liquid from the hot to the cold
regions of the surface, while the resulting shear stresses cause a flow in the bulk of
the liquid. It has been found by Smith & Davis (1983) that thermocapillarity, besides
driving the basic flow in such dynamic liquid layers, provides a new mechanism of
instability called hydrothermal waves. This instability has been shown to have an
inherent three-dimensional character: even in the simplest case of a unidirectional
flow driven by a longitudinal temperature gradient in an unbounded liquid layer the
hydrothermal waves are found to travel obliquely to the base flow. The angle of
propagation depends on the Prandtl number of the fluid.

Besides the general goal of understanding the phenomena of thermocapillary-
driven instabilities, in many cases there is a need to control them that is motivated by
the role these phenomena play in various industrial applications, for instance, such
as the single semiconductor crystal growth from a melt (Schwabe 1988) and laser
or electron beam welding. Oscillations of both temperature and flow fields caused
by thermocapillary instabilities are known to be undesirable phenomena for these
technologies. Since low-Prandtl-number liquids possess, as a rule, a high electrical
conductivity, the magnetic field is an attractive tool to control the flow of such liquids.
In recent years, this has motivated increasing interest in the influence of a magnetic
field on the thermocapillary instabilities. The effect of a uniform vertical magnetic
field on the threshold of steady Bénard–Marangoni convection has been considered
by Nield (1966), Maekawa & Tanasawa (1989), Sarma (1979) and Wilson (1993a).
Onset of oscillatory Marangoni convection in the presence of a magnetic field has
been studied by Nitschke, Thess & Gerbeth (1991) and Wilson (1993b). Until now the
influence of magnetic fields on the hydrothermal wave instability has been investigated
only for the simplest case of longitudinal modes which, while revealing the basic
mechanisms of instability, may not be the most dangerous perturbations. In this
approximation a magnetic field spanwise to the basic flow has been considered by
Priede & Gerbeth (1995) and the case of a magnetic field transverse to the liquid
layer by Priede, Thess & Gerbeth (1994).

In the present paper we study the hydrothermal wave instability of thermocapillary-
driven flow in an electrically conducting liquid layer heated from the side and subjected
to a magnetic field. The analysis is restricted to a uniform magnetic field lying in the
plane of the layer, but arbitrarily oriented with respect to the direction of the basic
flow. The case of a magnetic field transverse to the liquid layer will be considered
in a subsequent paper. Here the main goal is to investigate the influence of both
the strength and orientation of the magnetic field on the threshold of convective
instability due to arbitrary infinitesimal disturbances.

2. Formulation of the problem
Consider an unbounded horizontal layer of viscous electrically conducting liquid

of density ρ, kinematic viscosity ν, thermal conductivity κ and electric conductivity
σ. The layer having, at rest, depth d is bounded from below by a plane perfectly
electrically insulating plate, and above by a free surface characterized by thermal
conductance per unit area h. The bottom of the layer is assumed to be either perfectly
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Figure 1. Sketch of the geometry of the layer.

thermally insulating or conducting. A constant temperature gradient β is imposed
along the layer, and a steady shear flow is set up by viscous surface stress as a
result of the temperature dependence of surface tension which is assumed to change
according to the linear law

τ = τ0 − γ(T − T0).

Here γ = −dτ/dT > 0 denotes the negative rate of change of surface tension with
temperature, while τ0 and T0 are reference values for surface tension and temperature,
respectively. The flow is subjected to a uniform magnetic field of induction B coplanar
to the liquid layer (ez · B = 0). As shown in figure 1, the origin of the Cartesian
coordinate system is set at mid-height of the layer with the x-axis directed oppositely
to the imposed temperature gradient, while the z-axis is set normal to the plane
of the layer. The depth d is assumed to be small enough so that buoyancy can be
neglected when compared to thermocapillary effects. The surface tension is assumed
to be high enough so that the free surface may be considered as a planar and non-
deformable boundary. The distortion of the external magnetic field by the electric
currents induced within the liquid due to its motion in this field is assumed to
be negligible, corresponding to the inductionless or low-magnetic-Reynolds-number
approximation commonly employed in laboratory magnetohydrodynamics (Moreau
1990).

Transforming both the governing equations and boundary conditions to a dimen-
sionless form the depth d is chosen as length scale, and the time t, velocity field v,
pressure field p, temperature difference T −T0, and the induced electrostatic potential
φ are referred to scales d2/ν, ν/d, ρν2/d2, βd, and Bν, respectively. The phenomena
to be considered are governed by the Navier–Stokes equation with an electromag-
netic force term added, the incompressibility constraint, the energy equation and the
continuity equation for electric current:

∂tv + (v · ∇)v = −∇p+ ∇2v + Ha2(−∇φ+ v × eB)× eB, (2.1)

∇ · v = 0, (2.2)

∂tT + v · ∇T = Pr−1∇2T , (2.3)

∇2φ = eB · ∇× v, (2.4)
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where Ha = Bd(σ/ρν)1/2 is the Hartmann number, and Pr = ν/κ is the Prandtl
number, eB = B/B is the unit vector in the direction of the magnetic field. The
mechanical boundary conditions on the free surface z = 1/2 are

ez × (∂zv + Re∇T ) = 0, (2.5)

ez · v = 0, (2.6)

where Re = γβd2/ρν2 is the Reynolds number. In fact, condition (2.5) represents
the sole driving force for the convective flow considered here: the balance between
thermocapillary and viscous stresses at the free surface. In order to keep consistency
with previous papers on this subject, the Marangoni number Ma = RePr is introduced
in addition to the Reynolds number. We note that the Marangoni number is not an
independent parameter of the problem under consideration, but it is used only for
representation of the computed results.

The heat transfer between the free surface and the surrounding medium is assumed
to obey Newton’s law

∂zT = −Bi (T − T∞(x)) on z = 1/2,

where Bi = hd/κ is the Biot number and T∞(x) = −x is the temperature of the
ambient medium, having the same imposed temperature gradient as the liquid layer.
On the rigid lower boundary there are no slip, impermeability and zero heat flux
(thermally insulating bottom) conditions:

v = 0; ∂zT = 0 on z = −1/2,

or a fixed temperature (perfectly thermally conducting bottom) condition:

T (−1/2) = T∞(x) = −x.

Subsequently these two different cases of the thermal boundary conditions at the
bottom will be referred to as insulating and conducting ones, respectively. At both
boundaries, assumed to be dielectric, the normal component of the induced electric
current must vanish:

jn = −∂zφ+ v · (eB × n) = 0 on z = 1/2, (2.7a)

jn = −∂zφ = 0 on z = −1/2, (2.7b)

where n = ez is the outward unit normal to the free surface. The system (2.1)–
(2.7) has a steady parallel flow solution v̄ = (ū, 0, 0) maintaining zero mass flux
through any vertical cross-section, which was called the return flow solution by
Smith & Davis (1983):

ū(z) = Re

(
3z2

4
+
z

4
− 1

16

)
, (2.8)

T̄ (x, z) = −x− PrRe

(
z4

16
+
z3

24
− z2

32
− (1− S)

z + 1/2

32
+ P

)
, (2.9)

p̄(x) = 3
2
Rex, (2.10)

φ̄(z) = Re(eB · ey)
(
z3

4
+
z2

8
− z

16

)
, (2.11)

where S = 0 and P = 23
3×162 for a thermally insulating bottom and S = 2

3
Bi/(1 + Bi )

and P = 7
3×162 for a conducting bottom.
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It has to be noted that as long as we consider the basic flow as being horizontally
homogeneous, the electric field induced by the liquid motion is uniform and directed
perpendicular to the plane of the layer. Zero circulation of this field implies that
no electric currents closing within the liquid layer can be induced, but the electric
impermeability of the free surface also precludes the possibility of any electric current
passing normally through the layer. Thus the insulating horizontal boundary leads
to a separation of electric charges over the depth of the layer, so giving rise to an
electrostatic field which cancels that induced by the liquid motion. As a result, there
is no electric current induced by a horizontally uniform basic flow in a coplanar
magnetic field and hence there is no direct influence of the magnetic field on the basic
flow. In practice, the assumption of horizontal uniformity of the basic state implies
that the horizontal extent of a realistic laterally bounded layer has to be sufficiently
large for the development of such a basic flow. The necessary horizontal extent can
be estimated from the following considerations. Viscous stresses dominate over the
electromagnetic forces within shear layers parallel to the magnetic flux lines having a
typical thickness (Hunt & Shercliff 1971)

δp ∼ (dL)1/2Ha−1/2,

where L is a characteristic horizontal dimension of the layer. A region of the basic flow
dominated completely by the effect of viscous diffusion develops when the thickness
of the parallel shear layer spreads over the whole depth of the layer δp ∼ d, which
requires the aspect ratio of the layer to be at least

L/d ∼ Ha .

It means that with increasing strength of the coplanar magnetic field the influence of
the lateral walls spreads along the layer over distances proportional to Ha . Note that
even though the magnetic field has no direct effect on the basic flow, it can influence
the disturbances.

We analyse the linear stability of the basic state (2.8)–(2.11) with respect to in-
finitesimal disturbances in the form of plane travelling waves

(v, p, T , φ) = (v̄, p̄, T̄ , φ̄) + {v̂(z), p̂(z), T̂ (z), φ̂(z)} exp(ik · r + λt),

where k = (kx, ky) and r = (x, y) are wave and radius vectors, respectively, λ is a
complex growth rate. Upon substituting the solution sought in such form into the
governing equations (2.1)–(2.4) and applying the curl operator twice to (2.1) in order
to eliminate both the pressure and the scalar potential, the equations for the remaining
disturbance amplitudes may be written as

λD2ŵ =
[
D4 −Ha2(eB ·D)2

]
ŵ − ikx

[
ūD2 − ū′′

]
ŵ, (2.12)

λD2û =
[
D4 −Ha2(eB ·D)2

]
û−D2

[
ikxūû+ kyū

′ŵ
]
, (2.13)

λT̂ =
[
Pr−1D2 − ikxū

]
T̂ − T̄ ′ŵ + k−2(ikxŵ

′ + kyû), (2.14)

where D ≡
(
ez d/dz + ik

)
and the prime denotes derivative with respect to z, ŵ = ez · v̂

is the vertical velocity, and û = (k × ez) · v̂ denotes the velocity component perpen-
dicular to the wavevector multiplied by the wavenumber which henceforth is simply
referred to as the longitudinal velocity. It means that we consider the velocity distur-
bances in the coordinate system linked with the direction of the wavevector. Notice
that disturbance equations (2.12)–(2.14) are presented in a general form valid for any
orientation of magnetic field. For the particular case of a coplanar field, defined by
(ez · eB) = 0, the magnetic term takes the form (eB ·D)2 = −(eB · k)2.
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The four boundary conditions for the vertical velocity ŵ are

ŵ′′( 1
2
) + k2ReT̂ ( 1

2
) = 0, (2.15)

ŵ′(− 1
2
) = ŵ(± 1

2
) = 0. (2.16)

For the longitudinal velocity we have two explicit boundary conditions

û′( 1
2
) = û(− 1

2
) = 0. (2.17a, b)

Notice that because of the eliminated electrostatic potential the equation for the
longitudinal velocity (2.13) has become of fourth order. It means that besides (2.17)
two additional boundary conditions are required for û. Let us note that elimination
of electrostatic potential from the equation makes sense only as long as it can also be
eliminated from the boundary conditions (2.7) in order to reduce the formulation of
the problem to a closed form without involving any electrodynamic quantity. In the
case under consideration it can be done by evaluating the projection of the linearized
Navier–Stokes equation on the vector k × ez . Then the boundary conditions for the
induced electric current (2.7) can be obtained solely in terms of the longitudinal
velocity [

D2 − λ− ikxū
]
û = 0 on z = ± 1

2
. (2.18)

Although the present formulation is consistent and applicable for analytical solution
of the problem, the appearance of the eigenvalue λ in the boundary conditions
requires additional care to implement this formulation numerically. It turns out that
for a numerical solution the problem can be reformulated in a more elegant way
which is given in Appendix A. We note that the problem of boundary conditions
for induced currents is not faced when considering the transverse wave perturbation
(ky = 0), because in that case electric currents are induced strictly along the layer.
This problem is also not relevant for purely hydrodynamic stability of plane parallel
flows in a uniform magnetic field (Stuart 1954; Hunt 1966).

The boundary conditions for the temperature perturbation are

T̂
′
( 1

2
) + Bi T̂ ( 1

2
) = 0, (2.19)

at the free surface and

T̂
′
(− 1

2
) = 0, T̂ (− 1

2
) = 0 (2.20a, b)

for insulating and conducting bottoms, respectively.
Similarly to Smith & Davis (1983) for no magnetic field, for the particular case

of longitudinal waves (kx = 0) this disturbance equation system (2.12)–(2.20) can be
solved analytically. In general, the critical Marangoni number and both the associated
wavenumber and the direction of propagation of the most unstable perturbations are
found by solving the linear stability problem by making use of the modified Chebyshev
tau spectral method suggested by Gardner, Trogdon & Douglass (1989).

3. The longitudinal waves: results of analytical theory and order of
magnitude analysis

Before considering the general case of oblique hydrothermal waves, it is instructive
to examine the particular case of longitudinal waves defined by kx = 0. This is
motivated by the availability of an analytical dispersion relation (see Appendix B)
and the relative simplicity with which order of magnitude considerations can be used
for estimation of the critical instability parameters. It has to be noted that although a
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purely longitudinal wave represents a feasible instability mode, it may be not the most
unstable one, particularly in a coplanar magnetic field. Nevertheless, such analysis is
quite useful for revealing general features of instability which further might also be
relevant for the most dangerous oblique wave disturbances. In addition, the semi-
analytical solution can be used to verify the accuracy of the numerical procedure
employed for the more general case of oblique waves. Since only the component of
the magnetic field along the wavevector affects the disturbance, for longitudinal waves
it is sufficient to consider only the magnetic field imposed spanwise to the basic flow:
eB = ey .

As described in Appendix B, for kx = 0 the disturbance equations (2.12)–(2.20) can
be solved analytically to obtain a complex dispersion relation which can further be
transformed to two real equations (B 5), (B 6). The first equation, being independent
of the second one, has to be solved numerically for the frequency of neutrally stable
oscillations. Then the frequency is substituted into the second relation (B 6) which
yields straightforwardly the marginal Reynolds number.

3.1. Insulating boundaries

The neutral stability curves calculated for Pr = 0.01 at different Hartmann numbers
and adiabatic boundary conditions are shown in figure 2. The minima points of
these curves corresponding to the critical Marangoni number and the wavenumber of
the most unstable perturbation are plotted versus Pr and several Ha in figures 3(a)
and 3(b), respectively. It is seen in figure 2 that for long-wave disturbances (k � 1)
the marginal Marangoni number decreases as k−1 with increasing wavenumber and
attains its minimal value at the critical wavenumber kc which scales for small Prandtl
numbers as kc ∼ Pr1/2 (see figure 3). The magnetic field has a stabilizing effect on
an intermediate range of wavenumbers which depends on the strength of the field.
Both sufficiently long and short waves are virtually uninfluenced. When the magnetic
field is sufficiently strong, it causes a shift of the most unstable perturbation to lower
wavenumbers, scaling for Ha � 1 as k ∼ Ha−1. This relation means a stretching of
the critical wavelength proportionally to the strength of the magnetic field. Similarly,
the corresponding critical Marangoni number is increased directly with the strength
of the magnetic field. It can be seen in figure 3 that the lower the Prandtl number,
the higher the Hartmann number needed to influence the most unstable perturbation.
For Ha � 1 it is seen in addition that both the critical wavenumber and the Reynolds
number tend to be independent of the Prandtl number.

These asymptotic dependences evident from the numerical results can also be
deduced directly from the order of magnitude estimates of the linearized disturbance
equations. Such estimates allow many more characteristics of the instability to be
revealed than those obvious from the computed data. Before the effect of the magnetic
field on the instability threshold can be evaluated, we need to find this threshold
without a magnetic field. Unfortunately, derivation of the required non-magnetic
background is considerably more sophisticated than the subsequent estimates of the
effect of the magnetic field. Therefore, for most of the prerequisite non-magnetic
estimates we shall refer to Priede & Gerbeth (1997), where these results are derived
as well as confirmed by rigourous asymptotic solutions.

For adiabatic boundary conditions and no magnetic field, the frequency of neutrally
stable longitudinal hydrothermal waves is found to be determined by the characteristic
viscous diffusion time over the depth of the layer τν ∼ 1 as long as this time is shorter
than that of the thermal relaxation over the wavelength τκ ∼ k2Pr−1 (Priede &
Gerbeth 1997). For Pr � 1 it implies quite long waves such that k < Pr1/2. In
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Figure 2. The marginal Marangoni number (a) and frequency (b) of longitudinal wave mode
(kx = 0) versus wavenumber at Pr = 0.01 and various Hartmann numbers for Bi = 0 and an
insulating bottom.

this case, the temperature disturbances occurring at such long distances cannot be
influenced by the heat diffusion over the characteristic period of oscillations given
by τν which is shorter than the heat diffusion time over this distance τκ. As a result,
the amplitude of such long-wave temperature disturbances cannot depend on the
wavelength. Thus the shorter the wave, the higher the temperature gradient over
its length, and consequently the lower the Reynolds number necessary to ensure the
balance between thermocapillary and viscous stresses at the free surface, which results
in the following simple relation between the wavenumber and the marginal Reynolds
number:

Re ∼ k−1. (3.1)

This relation holds true down to the wavelength at which temperature disturbances
begin to be smoothed by a heat diffusion across the wave, which occurs when the
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thermal relaxation time across the wave becomes as short as that of the viscous
relaxation over the depth of the layer, namely k2Pr−1 ∼ 1. Evidently, this effect
determines the critical wavenumber scaling as

kc ∼ Pr1/2. (3.2)

It means that for Pr � 1 the critical wavelength may considerably exceed the depth
of the layer. We note that the same effect might also be responsible for a similar
long wavelength of travelling longitudinal rolls noticed originally by Hart (1983) in
his stability calculations of buoyancy-driven convection in a horizontal slot between
two insulating walls. An estimate of the critical Marangoni number follows from (3.1)
and (3.2) to be

Mac ∼ Pr1/2. (3.3)

As can be seen in figure 3(a, b) both low-Prandtl-number scalings (3.2) and (3.3)
fit very well with the calculated results up to Pr ≈ 0.2, where the most unstable
mode switches to another branch characteristic for high Prandtl numbers. Since the
range of this and higher Prandtl numbers is not relevant for electrically conducting
liquids, this transition lies outside the scope of the present study. It has to be stressed
here that the scalings (3.2), (3.3) are valid only for insulating boundary conditions,
and cannot straightforwardly be applied to thermally non-insulating ones, as it
was attempted by Tison et al. (1991) in order to interpret their experimental results
obtained with molten tin in a well-conducting iron container. The mechanism of
critical parameter selection for non-insulating boundary conditions is considered in
the next section.

In order to estimate the effect of a coplanar magnetic field, let us examine the
magnitudes of the viscous diffusion term (D4) and the magnetic one (Ha2k2) in
equations (2.12), (2.13). It is evident that for Ha � 1 in both limits of sufficiently
short waves k > Ha (D4 ∼ k4) and sufficiently long ones such that k < Ha−1 (D4 ∼ 1)
the viscous diffusion dominates over the effect of the magnetic field. It means that
very short waves are dominated by the viscous diffusion over the wavelength, whereas
long-wave disturbances, being like the basic flow nearly uniform along the magnetic
flux, and therefore interacting weakly with the field, are dominated by viscous shear
due to the rigid bottom of the layer. In the intermediate range of wavenumbers, the
viscosity dominates only within a specific boundary layer of thickness δB which may
be estimated by comparing orders of magnitudes of viscous (D4 ∼ δ4

B) and magnetic
terms of equations (2.12), (2.13) as

δB ∼ (kHa)−1/2.

It means that the velocity disturbances occurring at the free surface penetrate into
the liquid layer only over the characteristic distance δB before they are damped
out by the magnetic field trying to eliminate any transverse liquid flow. This effect
determines confinement of flow disturbances beneath the free surface. Thus, for a
sensible stabilization of the most dangerous perturbation, the critical wavelength
has to occur within the range of the wavenumbers influenced by the magnetic field,
which happens when the long-wave limit of this range (∼ Ha−1) attains the critical
wavenumber (3.2). This requires a sufficiently strong magnetic field such that

Ha > Ha∗ ∼ Pr−1/2. (3.4)

If the above condition holds, the amplitude of the temperature disturbance begins
to reduce on attaining the long-wave limit of the confinement effect that takes place
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Figure 3. The critical Marangoni number (a), wavenumber (b) and frequency (c) of longitudinal
waves (kx = 0) versus the Prandtl number at various Hartmann numbers for Bi = 0 and both
insulating and conducting bottoms; c denotes conducting, i insulating.

before the thermal smoothing over the wavelength becomes effective. Thus the critical
wavenumber scales as

kc ∼ Ha−1. (3.5)

Since wavenumbers smaller than the critical one lie outside the range influenced by
the magnetic field, relation (3.1) remains valid for sufficiently long waves down to
the critical one. Additionally, by taking into account the above estimate the critical
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Reynolds number can be evaluated as

Rec ∼ Ha . (3.6)

The estimates (3.5)–(3.6) are in agreement with the numerical result confirming that
both the critical wavenumber and Reynolds number (see figure 3a, b) are independent
of the Prandtl number.

3.2. Thermally perfectly conducting bottom

Numerical results show that there is a significant difference concerning the critical
wavelength between the cases of conducting and insulating bottoms. It is evident
in figure 3(b) that for a conducting bottom the critical wavelength is comparable
to the depth of the layer, whereas in the insulating case it was substantially longer.
Moreover, the critical Marangoni number, being now considerably higher than that
for an insulating bottom, is growing with decreasing Prandtl number in contrast to
the decreasing characteristic of the previous case (see figure 3a).

All these differences can also be explained by order of the magnitude considerations.
The selection of the critical wavelength for this case is quite obvious. Now there
is a fixed temperature at the bottom requiring the temperature perturbation to
vanish there. It means that in this case the characteristic drop of the temperature
perturbation over the depth of the layer is approximately equal to the amplitude of
this perturbation, denoted henceforth as T̂ 0, which also defines the corresponding
variation over the wavelength. Thus the perturbation of the horizontal heat flux
across the wave, estimated as Φy ∼ kT̂ 0, is decreasing with the wavelength. But the
perturbation of the transverse heat flux over the depth of the layer, estimated as
Φz ∼ T̂ 0, is independent of the wavelength. Hence, for the waves considerably longer
than the depth of the layer, the diffusion of the temperature perturbation has to
be dominated by this transverse heat flux. Consequently, for such long waves the
amplitude of the temperature perturbation has to be independent of the wavelength.
Similarly as in the previous section, it can be shown that for long-wave disturbances
the shear stress is dominated by the viscous diffusion over the depth of the layer,
and therefore it has to be independent of the wavelength. Then the balance of the
viscous and thermocapillary stresses at the free surface (2.15) leads to the relation
(3.1) holding up to the critical wavenumber at which the amplitude of temperature
perturbation begins to reduce because of heat diffusion over the wavelength. Evidently,
this mechanism determines the critical wavenumber for the case of a conducting
bottom to be

kc ∼ 1. (3.7)

The dimensionless thermal relaxation time for the long-wave disturbances is given by
the heat diffusion over the depth of the layer

τκ ∼ Pr , (3.8)

which for Pr � 1 is much shorter than the corresponding viscous relaxation time
τν ∼ 1. Comparison of the calculated results with these estimates reveals that although
the critical frequency is much higher than that resulting from the viscous relaxation
time, it is still much lower than that suggested by the thermal relaxation time (3.8).
The oscillations driven by the surface tension at a frequency being significantly higher
than the inverse viscous relaxation time leads to a viscous skin layer developing at
the free surface which can clearly be noticed on comparing the patterns of critical
perturbations for insulating and conducting bottoms shown in figure 4. Rather
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Figure 4. Streamlines (a), isotachs of longitudinal velocity (b) and isotherms (c) of the critical
longitudinal wave perturbation travelling to the right at Pr = 0.01 for Ha = 0 and both insulating
(left) and conducting (right) boundaries.

sophisticated considerations based on the concept of the viscous skin layer result
in the following estimates for the frequency and the Reynolds number of neutrally
stable long-wave disturbances (Priede & Gerbeth 1997):

ω0 ∼ Pr−2/3, (3.9)

Re ∼ k−1ω0Pr−1/2. (3.10)

Recalling the estimate of the critical wavenumber (3.7) the critical Marangoni number
is found to scale as

Mac ∼ Pr−1/6. (3.11)

Scalings (3.9) and (3.11) are in agreement with the numerical results plotted in
figure 3(c, a).

The effect of the magnetic field becomes significant at the wavelength at which the
electromagnetic term attains the order of magnitude of the transient one in equations
(2.12), (2.13). Thus the critical perturbation can be influenced by the magnetic field
only if its strength is sufficiently high that

Ha > Ha∗ ∼ Pr−1/3. (3.12)

It is evident on comparing this estimate with (3.4) that the field strength necessary to
influence the instability threshold for a conducting bottom is slightly lower than that
for the thermally insulating one. For Ha > Ha∗, the electromagnetic term reaches the
order of magnitude of the transient one in equations (2.12), (2.13) at wavenumbers
scaling as

kc ∼ Pr−1/3Ha−1.

This estimate is in good agreement with the numerically found critical wavenumbers,
the dependence of which on the Prandtl number at several Hartmann numbers is
plotted in figure 3(b). Having fixed the critical wavenumber we can straightforwardly
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evaluate the critical Marangoni number from relation (3.10):

Mac ∼ Pr1/6Ha .

3.3. Non-adiabatic free surface: Bi 6= 0.

Besides perfectly insulating and conducting boundaries there may be an intermediate
case, when the heat flux through the boundary is coupled to its temperature. We wish
to show here that this case, possessing its own scaling relations, actually covers both
previous ones as special limits. When the heat flux through a surface is a function of its
temperature, such a generally nonlinear relation may be approximated for infinitesimal
disturbances by its first linear term, which leads to the boundary condition (2.19).
Hereafter let us assume the bottom of the layer to be insulating. Then the boundary
condition (2.19) implies that the drop of the temperature perturbation over the depth
of the layer denoted as δT̂ 0 has to be proportional to the perturbation of the surface
temperature T̂ 0:

δT̂ 0 ∼ Bi T̂ 0.

The heat flux over a wavelength, estimated as Φy ∼ kT̂ 0, reduces with increasing
wavelength, while the transverse heat flux over the depth of the layer, estimated as
Φz ∼ δT̂ 0 ∼ T̂ 0, is independent of the wavelength. Similarly as for a conducting
bottom, the critical wavelength is attained when the term responsible for the heat
diffusion across the wavelength becomes comparable to that related to the diffusion
over the depth of the layer in equation (2.14), which yields

kc ∼ Bi 1/2. (3.13)

The estimate above when compared to that for purely insulating boundaries (3.2)
implies that the effect of thermal coupling becomes relevant for Pr � 1 at quite small
Biot numbers

Bi ∼ Pr .

This relation may be regarded as one defining the validity of the adiabatic surface ap-
proximation. The heat exchange between the layer and the ambient medium possesses
its own characteristic time which can be estimated by comparing the transient term
with that responsible for heat diffusion over the depth of the layer in equation (2.14):

τc ∼ Pr/Bi .

If Bi � Pr , this time is much shorter than the viscous relaxation time over the depth
of the layer. The mechanism determining the frequency of neutrally stable long-wave
disturbances in the case of non-zero Biot numbers turns out to be similar to that for
a conducting bottom, which results in the following estimates for the frequency and
the critical Marangoni number:

ω0 ∼ (Pr/Bi )−2/3, (3.14)

Mac ∼ k−1
c Bi 7/6Pr−1/6 ∼ Bi 2/3Pr−1/6. (3.15)

Arguments similar to those used in the previous case give, for sufficiently strong
magnetic field such that

Ha > Ha∗ ∼ Pr−1/3Bi−1/6,

the critical wavenumber and Marangoni number scaling, respectively, as

kc ∼ (Bi/Pr)1/3Ha−1;

Mac ∼ Bi 5/6Pr1/6Ha .
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As might already be expected, these scalings merge with the corresponding ones
for the insulating boundaries when Bi ∼ Pr , but they correspond to those for a
conducting bottom when Bi ∼ 1.

4. The oblique waves
In the general case of oblique waves (kx 6= 0 and ky 6= 0), the spectrum of complex

growth rates λn for each wave mode specified by the wavevector k is found by
solving the ordinary matrix eigenvalue problem resulting from the application of a
modified Chebyshev-tau spectral method to (2.12)–(2.20). A detailed description of
this procedure is given in Appendix A. The marginal Reynolds number rendering the
maximal real part of the growth rates equal to zero

max
n

Re [λn(Re; k)] = 0

is found numerically as the root of the above equation. The minimum of the marginal
Reynolds number over all wavevectors corresponds to the critical value Rec above
which the onset of instability is expected. The modulus of the critical wavevector, at
which the minimum of the Reynolds number is attained, gives the critical wavenumber
kc, but the direction of this wavevector is specified by an angle αk with respect to the
x-axis:

cos(αk) = (ex · k)/k.

For instance, αk = 0 corresponds to transverse waves, whereas αk = 90◦ defines the
longitudinal wave mode (kx = 0) travelling, respectively, streamwise and spanwise
with respect to the basic flow. The imaginary part of the growth rate gives the
oscillation frequency of the corresponding mode.

The numerical solutions are verified by the results obtained for longitudinal waves
from the analytic dispersion relation, considered in the previous section, as well as
by the non-magnetic case solved by Smith & Davis (1983). It is seen in figure 5(a)
that computed values of the critical Marangoni number coincide closely with those
resulting from the analytical dispersion relation. For the case of insulating boundaries
and a weak magnetic field the critical wavevector is found to be directed at αk ≈ 77.8◦

(see figure 5b) as the Prandtl number becomes sufficiently small, which is in a good
agreement with the corresponding result of Smith & Davis (1983).

As seen in figure 6(a), the longitudinal mode, which was considered in the previous
section, presents for low Prandtl numbers a rather good approximation of the most
dangerous oblique wave, provided the bottom of the layer is insulating. However, when
the bottom is conducting, the critical Marangoni number of the oblique mode deviates
considerably from that for the most unstable longitudinal wave. This deviation is due
to the advection of disturbances by the basic flow. The effect of advection sets in
as soon as the perturbation becomes non-uniform along the direction of the basic
flow. There is no such corresponding effect experienced by purely longitudinal waves.
For the case of an insulating bottom exerting long-wave instabilities, the effect of
advection is given by the term kxRe = cos(αk)kRe in equations (2.12), (2.13). The
order of magnitude of this term can be estimated by making use of relations (3.2),
(3.3), which results in

cos(αk)kcRec ∼ cos(αk) 6 1.

Thus the magnitude of the advection effect does not exceed that of the viscous
diffusion over the depth of the layer which was shown in the previous section to
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Figure 5. The critical Marangoni number (a) and angle of propagation (b) of oblique hydrothermal
waves versus Hartmann number at Pr = 0.01 and various angles of orientation of the magnetic
field for Bi = 0 and both insulating and conducting bottoms.

dominate the most dangerous longitudinal waves. It means that the obliqueness of
the most unstable mode does not disturb significantly the mechanism of propagation
of pure longitudinal waves, unless the direction of propagation approaches that of
the transverse waves, given by αk = 0, where the previous mechanism is replaced by
another one (Smith 1986). On the contrary, in the case of conducting bottom the
advection term estimated by the aid of (3.7), (3.10) as

cos(αk)kcRec ∼ cos(αk)Pr−7/6,

reaches the order of magnitude of the dominating transient term ∼ Pr−2/3 at relatively
small deviations of the propagation angle from the spanwise direction:

cos(αk) ∼ αk − π/2 ∼ Pr1/2.

Hence, the scalings of longitudinal waves hold true only for critical propagation
angles smaller than that estimated above.
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without magnetic field at Bi = 0 and both insulating (a) and conducting (b) bottoms.

It follows from the disturbance equations (2.12), (2.13) that the effective strength
of the coplanar magnetic field influencing disturbances is proportional to the cosine
of the angle between the direction of the corresponding wavevector and that of the
field,

(eB · k) = k cos(αk − αB),

where the direction of the magnetic field is defined like that of the wavevector by
the corresponding angle αB with respect to the x-axis. It means that the coplanar
magnetic field has no influence on perturbations with wavevectors perpendicular to
the field or, respectively, the wave fronts aligned with the field. Thus application of a
however strong coplanar magnetic field cannot provide a critical Marangoni number
higher than that for the aligned mode. All non-aligned disturbances are stabilized by
a coplanar magnetic field. Therefore the aligned unstable waves, if any, become the
most dangerous ones in a sufficiently strong magnetic field.

The critical Marangoni number and the corresponding propagation angle versus
the strength of the magnetic field of different orientations for Pr = 0.03 are plotted
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Figure 7. The critical Marangoni number (a) and propagation angle (b) of oblique hydrothermal
waves versus Hartmann number at Pr = 0.03 and various angles of orientation of the magnetic
field for Bi = 0 and both insulating and conducting bottoms.

in figure 7, and the corresponding wavenumbers are given in figure 8. The numerical
results show that the way in which the alignment takes place strongly depends
on the direction of the magnetic field. For most directions the alignment proceeds
smoothly with increase of magnetic field, except the direction about spanwise to the
basic flow (αB = 90◦). For this direction the aligned critical mode is reached by
a pronounced jump of the critical wavevector when the strength of the magnetic
field exceeds a certain value depending on the Prandtl number. For the conducting
bottom there is some additional mode switching associated with a minor jump of
the critical wavevector. The cause of this effect becomes evident upon examining
the global minimum of the marginal Marangoni number along a fixed direction of
wavevector as a function of the angle αk specifying this direction. Notice that the
critical Marangoni number is given by the global minimum over all directions. The
minimal Marangoni number versus the angle of the corresponding direction and for
different strengths of magnetic field spanwise to the basic flow is plotted in figure 9. It
can be seen that these curves consist of two intersecting branches, where one branch
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Figure 8. The critical wavenumber for oblique and longitudinal (kx = 0) modes versus the Hartmann
number at Pr = 0.03 and various angles of orientation of the magnetic field for Bi = 0 and both
insulating and conducting bottoms.

develops from the transverse mode, while the other evolves from the longitudinal
one. For sufficiently weak magnetic field, the most unstable mode resides on the
longitudinal branch. Increase of the magnetic field causes the critical Marangoni
number to rise, while the minimal Marangoni number of the purely transverse wave
mode remains unaffected by the magnetic field of the given orientation. At a certain
strength of the magnetic field the local minimum of the longitudinal wave branch
rises above the critical one for the transverse waves. At this point the global minimum
jumps to the purely transverse mode. Since the latter is aligned with the magnetic
field, nothing changes with a further increase of the field strength.

It turns out that exactly the transverse mode yields the maximal critical Marangoni
number over all directions of propagation. Thus maximal stabilization can be achieved
by imposing a magnetic field spanwise to the basic flow (αB = 90◦). The Hartmann
number which is sufficient for attaining the maximal stabilization along with the
maximal attainable value of the critical Marangoni number is plotted in figure 10 as
a function of the Prandtl number. Numerical results show that the alignment for a
conducting bottom takes place at lower Hartmann numbers than that for an insulating
one. This fact may be regarded as confirming the above order of magnitude estimates
suggesting that hydrothermal wave instability is more sensitive to the magnetic field
when the bottom of the layer is conducting rather than insulating.

Contrary to the longitudinal mode, the transverse one turns out to be almost
insensitive to the thermal properties of the bottom. Thus the maximal attainable
critical Marangoni number for the conducting case is practically indistinguishable
from that of the insulating case shown in figure 10. The associated jump of the
propagation angle versus the Prandtl number is plotted in figure 11.

It is seen in figure 10 that there is a fixed value of the maximal critical Marangoni
number, unless the Prandtl number is smaller than the critical value Pr c = 0.018
which within numerical accuracy is the same for both insulating and conducting
bottoms. For Pr < Pr c application of a sufficiently strong magnetic field leads to
the alignment of the most unstable mode, except for the magnetic field applied
approximately spanwise to the basic flow. As shown in figure 5(b) for Pr = 0.01, there
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angle at Pr = 0.03 and various values of Hartmann number of the spanwise magnetic field
(αB = 90◦) for Bi = 0 and both insulating (a) and conducting (b) bottoms.

is no alignment for a spanwise magnetic field. In this case the critical Marangoni
number is increased almost directly with the strength of the magnetic field without
experiencing any saturation. The reason for such an unexpected behaviour can be
clarified by examining once more the dependence of the marginal Marangoni number
on the direction of the wavevector. The critical Marangoni numbers for Pr = 0.01
and various strengths of the spanwise magnetic field are plotted in figure 12, from
which it is evident that the longitudinal branch exists only down to a certain angle
depending on the Prandtl number. The minimal Marangoni number tends to infinity
as this angle is approached because there are no unstable disturbances for smaller
angles. Thus there is no upper constraint on the maximal stabilization, provided the
magnetic field is imposed within the angle, where unstable modes are absent. This
angle versus the Prandtl number is shown in figure 11.

The absence of unstable transverse waves appears to be a specific feature due to
the profile of the basic return flow which turns out to be at least linearly stable with



160 J. Priede and G. Gerbeth

104

103

102

101

0.01 0.018 0.1 1 2

Prandtl number

Marangoni number

Hartmann number

Insulating
Conducting

Figure 10. The maximal attainable critical Marangoni number (practically indistinguishable for the
different thermal properties of the bottom) and the minimal Hartmann number necessary to attain
the alignment for Bi = 0 and both insulating and conducting bottoms.

60

30

0
0.01 0.018 0.1 1 2

Prandtl number

Insulating
Conducting

A
ng

le

Figure 11. Jump of the propagation angle about the alignment point (Pr > 0.018) and the angle
within which the transverse wave branch is absent (Pr < 0.018) for Bi = 0 and both insulating and
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respect to purely hydrodynamic disturbances. Thus the branch of unstable transverse
waves, which is expected to merge with that of pure hydrodynamic instability as
Pr → 0, exists only down to the Prandtl number Pr c = 0.018, where the critical
Marangoni number goes to infinity (see figure 6).

The basic return flow, given by (2.8), can be represented as a linear combination of
plane Poiseuille and Couette flows taken with appropriate weighting. The Poiseuille
flow, unlike the Couette flow which is linearly stable, is well known to be linearly
unstable, even having no inflection point (Drazin & Reid 1981). It is also known that
a relatively weak contribution of the Couette flow to the Poiseuille flow is sufficient
to render the resulting flow linearly stable (Drazin & Reid 1981) which, obviously,
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is a reason for the stability of the basic return flow. The hydrodynamic stability
can be inferred directly from the results of Smith & Davis (1983), who showed that
the oblique waves are the most dangerous ones for low Prandtl numbers. If the
basic flow were hydrodynamically unstable, the transverse wave mode would be
the most dangerous one for sufficiently small Prandtl numbers. Such a conclusion
results from the following considerations. If there were a fixed critical Reynolds
number for the purely hydrodynamic instability, the critical Reynolds number of the
oblique hydrothermal waves, which was shown to depend on the Prandtl number as
Rec = Mac/Pr ∼ Pr−1/2, would exceed any fixed value at sufficiently small Prandtl
number. Then the most unstable perturbation would switch from the oblique to the
purely transverse mode, as is known to happen for Hadley circulation (Hart 1983;
Laure & Roux 1989). Since this is not the case for thermocapillary-driven convection,
one can conclude that the basic return flow must be hydrodynamically stable.

Apparently, the hydrodynamic stability of the thermocapillary-driven basic flow
might also be responsible for the effect of stabilization of the transverse roll mode of
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buoyancy-driven convection by imposing a sufficiently strong thermocapillary-driven
flow, as has been observed both by Hadid & Roux (1992) and Mundrane & Zebib
(1994).

5. Summary and conclusions
This study deals with hydrothermal wave instability of thermocapillary-driven

flow in an unbounded electrically conducting liquid layer heated from the side
and subjected to a uniform magnetic field coplanar to the layer. The particular
modes of the longitudinal waves are considered by means of numerical analysis of
an analytically obtainable dispersion relation. It is shown by an order of magnitude
analysis that the magnetic field necessary to get a significant influence on the instability
strongly depends on the thermal boundary conditions. In particular, it turns out that
instability is more sensitive to the magnetic field at non-insulating boundaries than
at adiabatic ones. The critical wavelength and the corresponding Marangoni number
of the most unstable longitudinal wave are found to increase proportionally to the
strength of the magnetic field when the latter is strong enough. In the general case of
oblique hydrothermal waves, the critical Marangoni number, corresponding frequency,
wavenumber and direction of propagation of the most unstable disturbances, is found
numerically by making use of a modified Chebyshev-tau spectral method. Scalings
of the longitudinal waves are shown to also remain valid for the most unstable
oblique waves when the boundaries are insulating. However, this is not the case
for non-insulating boundary conditions, where the advection of perturbations by the
basic flow significantly interferes in the mechanism of the longitudinal waves at very
small deviation of the propagation direction from the spanwise one. For a conducting
bottom this critical deviation is estimated to scale as αk − π/2 ∼ Pr1/2.

In general, a coplanar magnetic field stabilizes all disturbances, except those aligned
with the field which are not influenced at all. This effect results in the alignment of
the most dangerous disturbance along the magnetic field with increasing strength.
Therefore the critical Marangoni number increases with the magnetic field only
until the most dangerous disturbance does not align along the field. Thus the most
unstable of the aligned disturbances yields the highest value of the critical Marangoni
number which can ever be attained for this orientation of the magnetic field. The
highest critical Marangoni number over all directions of propagation is provided by
the purely transverse waves which are aligned spanwise to the basic flow magnetic
field. If Pr > Pr c = 0.018, the maximal stabilization is attained at a fixed magnetic
field strength depending on the Prandtl number. Numerical results confirm that the
strength of the magnetic field necessary for the maximal stabilization is lower for
a conducting bottom than that for an insulating one. Additionally, the maximal
attainable critical Marangoni number, which is provided by the transverse mode, is
found to be virtually insensitive to the thermal properties of the bottom. When the
magnetic field is directed approximately spanwise to the basic flow, the aligned state
is achieved by a jump of the critical wavevector. It is found that there is no unstable
transverse disturbance for Pr 6 Pr c. Thus there is no transverse wave having a fixed
critical Marangoni number which could be aligned along the spanwise magnetic field.
In this case, the critical Marangoni number increases almost linearly with magnetic
field strength without any saturation. The value of the Prandtl number Pr c = 0.018,
below which there is no unstable transverse wave mode, is found within numerical
accuracy to be the same for both conducting and insulating bottoms. The absence of
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unstable transverse hydrothermal waves for Pr < Pr c is due to the linear stability of
the basic return flow with respect to purely hydrodynamic disturbances.

The value Pr c = 0.018 is obviously relevant for common metal and semiconductor
melts. For instance, molten tin (Pr = 0.015), gallium at high temperatures (Pr = 0.01
at 1500 K) and molten silicon (Pr = 0.014) have Pr < Pr c, whereas both liquid
mercury (Pr = 0.026) and gallium close to the melting point (Pr = 0.03) have
Pr > Pr c (Hurle 1994). However, from the experimental point of view the effect
of the alignment seems to be not a severe limitation for the stabilization of the
flow. For example, the flow of liquid gallium at a temperature close to the melting
point (Pr = 0.03) can be stabilized by a spanwise magnetic field from the critical
Marangoni numbers Mac = 11.2 and Mac = 28.1 for insulating and conducting
bottoms, respectively, up to Mac ≈ 562 (see figure 9a, b). This means that for a layer
of depth d = 3 mm the critical temperature gradient can be increased, respectively,
from β ≈ 2.6 K cm−1 and β ≈ 6.5 K cm−1 up to β ≈ 130 K cm−1. The maximum
stabilization would be attained at Ha = 1304 for an insulating bottom and at
Ha = 242.6 for conducting bottom requiring for a layer of d = 3 mm depth a
magnetic field of strength B ≈ 11 T and B ≈ 2 T, respectively.

It has to be stressed that in the present study we have considered only the threshold
of the convective instability meant in the sense introduced by Landau (Landau &
Lifshitz 1959), but not in that often employed to refer to an instability of convective
flows. At the given threshold instability appears only in the frame of reference
travelling with the group velocity of the most dangerous perturbation. It means
that on exceeding a critical Marangoni number the basic flow becomes just able to
amplify externally excited perturbations, but it may be insufficient for the onset of
experimentally observable self-sustained hydrothermal waves. The problem of both
absolute and global hydrothermal wave instability will be addressed in a subsequent
paper.

We thank A. Thess for interesting discussions during the course of this work. We
are grateful to an anonymous referee whose numerous detailed comments were very
helpful for us. This work was supported by the German Space Agency (DARA).

Appendix A. The modified Chebyshev-tau spectral method
Following the modified tau spectral method the differential operator defined by

equation (2.12) is factorized by introducing a ‘vorticity’ ζ̂, which results in a system
of two second-order ordinary differential equations[

D2 − λ
]
ζ̂ −

[
Ha2(eB ·D)2 + ikx(ūD

2 − ū′′)
]
ŵ = 0,

D2ŵ = ζ̂.

Solution is sought as expansions in truncated series of Chebyshev polynomials

ŵ(z) ≈
N+4∑
n=0

wnTn(2z), ζ̂(z) ≈
N+4∑
n=0

ζnTn(2z).

Replacing each equation by the corresponding Chebyshev-tau approximation we get
the following set of equations which can be written in matrix notation as

A11ζ + A12y − λζ1 + B1w = 0, (A 1)

A21ζ + A22y − λζ2 + B2w = 0, (A 2)
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A31ζ + A32y − λy + B3w = τw, (A 3)

Qw = ζ, (A 4)

Q3w − y = τ ζ , (A 5)

where

ζ = (ζ0, . . . , ζN+2)
T , ζ1 = (ζ0, . . . , ζN)T = Q1w, ζ2 = (ζN+1, ζN+2)

T = Q2w.

y = (ζN+3, ζN+4)
T , τw = (τw1 , τ

w
2 )T , τ ζ = (τζ1, τ

ζ
2)
T , w = (w0, . . . , wN+4)

T .

The corresponding partitioning of the matrix equations is
A11 A12

A21 A22

A31 A32




ζ

y

− λ

ζ1

ζ2

y


+


B1

B2

B3



 w

 =


0

0

τw


,


Q1

Q2

Q3



 w

−

ζ1

ζ2

y


=


0

0

τ ζ


.

The objective is to get a reduced set of equations in terms of w only, which is
achieved by solving (A 2) for y:

y = A−1
22 [A21ζ − λζ2 + B2w] = A−1

22 [A21Q − λQ2 + B2]w. (A 6)

Substitution of (A 6) into (A 1) results in

λAww1 w = Bww1 w, (A 7)

where

Aww1 = Q1 − A12A
−1
22 Q2,

Bww1 = A11Q + B1 − A12A
−1
22 [A21Q + B2] .

The unknowns τw and τ ζ are found as

τw = [A31Q + B3]w − A33y − λy, τ ζ = Q3w − y.

Concerning the equation for longitudinal velocity (2.13) it turns out that because
of the eigenvalue occurring in the boundary conditions (2.18) a straightforward
application of the modified tau method fails to eliminate spurious solutions. To
get around this problem equation (2.13) is rewritten as the following set of two
second-order ordinary differential equations:[

D2 − λ
]
û− ikxūû− kyū′ŵ + iHa(eB ·D)ĵ = 0, (A 8)

iHa(eB ·D)û = D2ĵ. (A 9)

The first equation is obtained by projecting the linearized Navier–Stokes equation on
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the vector k × ez , which is directed spanwise to the wave. This procedure allows the
pressure gradient to be eliminated. The second equation is the z-component of Ohm’s
law for a moving medium having been subjected twice to the curl operator. Such
factorization is advantageous because ĵ represents the z-component of the induced
electric current, which is the variable used explicitly to define the electrical boundary
conditions

ĵ(± 1
2
) = 0, (A 10)

which combined with (A 8) yields boundary conditions (2.18) solely in terms of û.
Expanding û and ĵ as truncated series of Chebyshev polynomials

û(z) ≈
N+2∑
n=0

unTn(2z), ĵ(z) ≈
N+2∑
n=0

jnTn(2z),

equations (A 8), (A 9) can be replaced by

A1u− λu1 + Buw1 w + iD11j1 + iD12j2 = 0, (A 11)

A2u− λu2 + Buw2 w + iD21j1 + iD22j2 = τ u, (A 12)

C11j1 + C12j2 − iD1u = 0, (A 13)

C21j1 + C22j2 − iD2u = τ j , (A 14)

where

u = (u0, . . . , uN+2)
T , u1 = (u0, . . . , uN)T , u2 = (uN+1, uN+2)

T , τ u = (τu1, τ
u
2)
T .

j = (j0, . . . , jN+2)
T , j1 = (j0, . . . , jN)T , j2 = (uN+1, jN+2)

T , τ j = (τj1, τ
j
2)
T .

The boundary conditions for electric current (A 10) can be replaced by

Cb1j1 + Cb2j2 = (0, 0)T . (A 15)

The objective now is to remove the vectors j1 and j2 from (A 11). In the first step
(A 15) is solved for j2:

j2 = −C−1
b2 Cb1j1. (A 16)

Upon substitution of (A 16) into (A 13) it can be solved for j1:

j1 = i
[
C11 − C12C

−1
b2 Cb1

]−1
D1u. (A 17)

Substitution of (A 16) and (A 17) into (A 11) yields

λu1 = Buu1 u+ Buw1 w,

where

Buu1 = A1 −
[
D11 − D12C

−1
b2 Cb1

] [
C11 − C12C

−1
b2 Cb1

]−1
D1.

Expanding the amplitude of temperature perturbation as

T̂ (z) ≈
N+2∑
n=0

θnTn(2z),

equation (2.14) can be replaced straightforwardly by the matrix equation

Bθθ1 θ − λθ1 + Bθw1 w + Bθu1 u = 0,

Bθθ2 θ − λθ2 + Bθw2 w + Bθu2 u = τ θ,
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where

θ = (θ0, . . . , θN+2)
T , θ1 = (θ0, . . . , θN)T , θ2 = (θN+1, θN+2)

T , τ θ = (τθ1 , τ
θ
2)T .

Upon adding the necessary approximations of the boundary conditions we get a
complete system of equations:

λ

 A
ww
11 Aww12

0 0


 w1

w2

 =

 B
ww
11 Bww12

Bwwb1 Bwwb2


 w1

w2

+

 0 0

Bwθb1 Bwθb2


 θ1

θ2

 ,

λ

 u1

0

 =

 B
uw
11 Buw12

0 0


 w1

w2

+

 B
uu
11 Buu12

Buub1 Buub2


 u1

u2

 ,

λ

 u1

0

 =

 B
θw
11 Bθw12

0 0


 w1

w2

+

 B
θu
11 Bθu12

0 0


 u1

u2



+


Bθθ11 Bθθ12

Bθθb1 Bθθb2


 θ1

θ2

 .
In addition, it is necessary remove the rows of boundary conditions by eliminating

vectors w2, u2 and θ2 from the above equations. The reduced system is obtained as

λ

 A11 0 A13

0 I 0
0 0 I

 w1

u1

θ1

 =

 B11 0 B13

B21 B22 B23

B31 B32 B33

 w1

u1

θ1

 ≡
 B1

B2

B3

 w1

u1

θ1

 ,
(A 18)

where

A11 = Aww11 − Aww12 B
ww
b2
−1Bwwb1 ,

A13 = −Aww12 B
ww
b2
−1
[
Bwθb1 − Bwθb2 Bθθb2

−1
Bθθb1

]
,

B11 = Bww11 − Bww12 B
ww
b2
−1Bwwb1 ,

B12 = 0,

B13 = −Bww12 B
ww
b2
−1
[
Bwθb1 − Bwθb2 Bθθb2

−1
Bθθb1

]
,

B21 = Buw11 − Buw12B
ww
b2
−1Bwwb1 ,

B22 = Buu11 − Buu12B
uu
b2
−1Buub1,

B23 = −Buw12B
ww
b2
−1
[
Bwθb1 − Bwθb2 Bθθb2

−1
Bθθb1

]
,

B31 = Bθw11 − Bθw12 B
ww
b2
−1Bwwb1 ,

B32 = Bθu11 − Bθu12B
uu
b2
−1Buub1,

B33 = Bθθ11 − Bθθ12B
θθ
b2

−1
Bθθb1 − Bθw12 B

ww
b2
−1
[
Bwθb1 − Bwθb2 Bθθb2

−1
Bθθb1

]
.

Eventually, the generalized matrix eigenvalue problem (A 18) can be transformed to
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an equivalent ordinary one

λ

 w1

u1

θ1

 =

 A−1
11 [B1 − A13B3]

B2

B3

 w1

u1

θ1

 .
The spectrum of eigenvalues is sought by making use of a standard eigenvalue solver,
for instance, such as the ZGEEV driver routine from LAPACK or that of the same
name from ESSL of IBM. The truncation length of Chebyshev expansions N = 16
was found for most cases to give numerical accuracy of at least five digits, except in
the vicinity of some singular points in the parameter space, where a truncation length
of N = 32 was found to be sufficient.

Appendix B. Analytical solution for longitudinal waves
In this particular case, defined by kx = 0, the general solution of equation (2.12)

may be presented as

ŵ(z) = A1 sinh(κ1z) + B1 cosh(κ1z) + A2 sinh(κ2z) + B2 cosh(κ2z), (B 1)

where κ1,2 are roots of the corresponding characteristic equation given by

κ1,2 =
(
k2 + λ/2±

(
λ2/4−Ha2k2

)1/2
)1/2

,

A1,2, B1,2 are constants to be determined from the boundary conditions. Since the
solution of linearized disturbance equations is fixed up to an arbitrarily factor, we
may impose an additional normalization condition specifying the viscous stress at the
free surface

ŵ′′( 1
2
) = C, (B 2)

where C may be any non-zero complex number. Then there are four fixed boundary
conditions (2.15)–(2.16) to find the same number of unknown constants entering the
general solution (B 1). Substituting this solution into (2.13) we can find a general
solution for the longitudinal velocity:

û(z) = C1 sinh(κ1z) + D1 cosh(κ1z) + C2 sinh(κ2z) + D2 cosh(κ2z) + ûp(z),

where the particular solution ûp(z) may be written as

ûp(z) =
k

κ2
1 − κ2

2

∫ z [κ2
1 − k2

κ1

sinh(κ1(z − τ))−
κ2

2 − k2

κ2

sinh(κ2(z − τ))
]
ŵ(τ)ū′(τ) dτ;

(B 3)

C1,2, D1,2 are constants to be determined from the conditions (2.17a, b) and (2.18).
Further, both vertical and longitudinal velocities are substituted into (2.14), whose
general solution can be obtained as

T̂ (z) = E sinh(γz) + F cosh(γz) + T̂ p(z),

where γ = (k2 + λPr)1/2 is the root of the corresponding characteristic equation;

T̂ p(z) =
Pr

γ

∫ z

sinh(γ(z − τ))
[
ŵ(τ)T̄

′
(τ)− k−1û(τ)

]
dτ (B 4)

is a particular solution; E and F are constants to be determined from the boundary
conditions (2.20). Since the particular solutions (B 3), (B 4) involve only products of
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hyperbolic functions and polynomials, they are integrable analytically. However, the
eventual result is far too long to be written here.

Additionally, we have to satisfy the boundary condition (2.15) which represents a
complex relation defining complex growth rates λ for each normal mode specified by
the wavenumber k. As long as we are concerned only with neutrally stable solutions,
defined by Re[λ] = 0, we can use this equation to find directly the imaginary part
of the growth rate ω = Im[λ] along with some control parameter satisfying the
constraint of neutral stability. Since the solution for the temperature disturbance can
be presented in the form

T̂ (z) = Reθ(z; k, λ,Pr ,Bi ,Ha),

it is convenient to choose the Reynolds number Re as control parameter. Then the
complex equation (2.15) may be rewritten as the following pair of two real equations

0 =
Re
[
ŵ′′( 1

2
)
]

Im
[
ŵ′′( 1

2
)
] − Re

[
θ( 1

2
)
]

Im
[
θ( 1

2
)
] , (B 5)

Re = k−1

(
−
ŵ′′( 1

2
)

θ( 1
2
)

)1/2

, (B 6)

where the first equation does not involve the chosen control parameter Re, and,
therefore it can be used independently of the second one to determine the frequency
of neutrally stable waves ω. Since the corresponding equation is transcendental, ω
must be found numerically. Eventually, the values of ω obtained are substituted into
the second equation (B 6) which straightforwardly defines the corresponding marginal
Reynolds number. Although equation (B 5) constrains the frequency of neutrally
stable waves so that the temperature disturbances must be either in phase or opposite
in phase with the disturbance of the viscous surface stress, it is evident from (B 6)
that only the latter case yields real values of Re.
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